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Let K � Rd be a compact set with a smooth boundary and consider a polynomial p

of total degree 4n such that jjpjjCðKÞ41: Then we show that jDT pðxÞj ¼ oðn2Þ for

any x 2 Bd K and T a tangential direction at x: Moreover, the oðn2Þ term is given in

terms of the modulus of smoothness of Bd K: # 2002 Elsevier Science (USA)
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1. INTRODUCTION

Let K � Rd be a compact set, and consider the set Pd
n of real algebraic

polynomials of d variables and total degree 4n: Denote by

Pd
nðKÞ :¼ fp 2 Pd

n : jjpjjCðKÞ41g

the unit ball in Pd
n with respect to the uniform norm jjpjjCðKÞ :¼ maxx2K

jpðxÞj: Furthermore, let Dxg denote the derivative of g 2 Pd
n in direction

x 2 Sd	1; where Sd	1 is the Euclidian unit sphere in Rd : Then the Markov
factor of the set K of order n is defined as

MnðKÞ :¼ maxfjjDxpjjCðKÞ: p 2 Pd
nðKÞ; x 2 Sd	1g: ð1Þ

It is well known that MnðKÞ 
 n2 for convex bodies K � Rd ; moreover even
sharp constants are established for convex bodies. (In univariate case this
dates back to Markov [9], for multivariate convex bodies see [6, 12, 13, 15].)
It is also known that for cuspidal domains the Markov factors are generally
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of larger (but subexponential) magnitude (see [1, 5, 7, 8, 10, 14] for details).
On the other hand, the classical Bernstein Inequality for trigonometric
polynomials yields that if p 2 Pd

nðSd	1Þ; x 2 Sd	1; and x is a tangential
direction to Sd	1 at x then

jDxpðxÞj4n:

This simple example shows that we might expect an improvement when only
tangential derivatives at the boundary points are considered. Let us
introduce the corresponding modification of the Markov factor (1). We
shall consider compact sets K � Rd with C1-smooth boundary (as usual
Bd K and Int K stand for the boundary and interior of K ; respectively). We
shall say that a compact set K � Rd ðInt Ka|Þ has a C1 boundary if there
exist an open set D*Bd K and a representation function fK 2 C1ðDÞ such
that fKðxÞ ¼ 1 for x 2 Bd K; fKðxÞ51 if x 2 Int K \ D and qqfKðxÞa0 for
x 2 Bd K ; where qqfK is the gradient of fK :

In the special case, when K is convex, the natural choice for fK is the so-
called Minkowski functional (see the examples and remarks following
Theorem 1).

Clearly, qqfKðxÞ provides the outer normal direction to Bd K at x 2 Bd K :
Hence, the tangential directions x 2 Sd	1 at x 2 Bd K satisfy x ? qqfKðxÞ:

Now the tangential Markov factor of a C1-domain can be introduced
as

MT
n ðKÞ :¼ maxfjDxpðxÞj : p 2 Pd

nðKÞ; x 2 Bd K ; x ? qqfKðxÞg: ð2Þ

The essential difference between (1) and (2) consists in the fact that instead
of all directions x 2 Sd	1 only tangential directions x ? qqfKðxÞ at x 2 Bd K

are considered. This modification will yield a substantial improvement in the
rate of Markov factors. Let

oðqqfK ; tÞ :¼ supfjqqfKðx1Þ 	 qqfKðx2Þj: x1; x2 2 D; jx1 	 x2j4tg

be the modulus of continuity of qqfK on D; where K ; fK ; and D are as
above.

This function satisfies the usual properties of moduli of continuity,
e.g.,

oðqqfK ; ctÞ4ð1þ cÞoðqqfK ; tÞ; t; c > 0:

Moreover, denote by oKðtÞ the modulus of smoothness of Bd K

oKðtÞ :¼ toðqqfK ; tÞ: ð3Þ
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Then we have the following:

Theorem 1. Let K � Rd ; Int Ka|; be a compact set with a C1

boundary. Then

MT
n ðKÞ4 c

o	1
K

1

n2

� �; n 2 N ð4Þ

with some constant c > 0 depending only on K and d:

Note that oKðtÞ ¼ oðtÞ for a C1-domain, i.e., estimate (4) yields that
MT

n ðKÞ ¼ oðn2Þ: Recalling that MnðKÞ 
 n2 even for balls in Rd we can see
that tangential Markov factors have smaller magnitudes. In particular, if
oKðtÞ 
 tp; 15p42 (this is the case when, for instance, K is an ‘p-ball) we
have MT

n ðKÞ ¼ Oðn2=pÞ: We shall also see further that (4) is sharp, in
general.

In the special case when K � Rd is a convex body, the C1-smoothness of
the boundary holds whenever K is regular, i.e., there is a unique supporting
hyperplane to K at every x 2 Bd K (see [3, p. 449]). In this case for any fixed
x0 2 Int K the corresponding Minkowski functional

fKðxÞ :¼ inf a > 0 :
x	 x0

a
2 K

n o
ð5Þ

can be used in (3). This yields.

Corollary 1. Let K � Rd be a regular convex body with fK given by (5).
Then (4) holds with some c > 0 depending only on K and d:

Thus, in particular, MT
n ðKÞ ¼ oðn2Þ whenever K is a regular convex body.

(This later statement was also obtained by Revesz [11].)
As a model of regular convex bodies consider the so-called ‘‘j-ball’’

defined as

Bj :¼ x ¼ ðx1; . . . ; xdÞ 2 Rd :
Xd

j¼1

jðjxjjÞ41

( )
;

where j 2 C2ð0; 1� is a strictly increasing convex continuous function on
½0; 1�; jð0Þ ¼ 0; jð1Þ ¼ 1: Assuming, in addition, that jðtÞ=t2 is a
decreasing function on ð0; 1� it is easy to show that for K ¼ Bj; we have
oKðtÞ 
 jðtÞ: Moreover, we have the following converse to (4) which shows
that Theorem 1 provides in general the best bound possible.
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Theorem 2. There exists c1 > 0 so that

MT
n ðBjÞ5

c1

j	1ð1=n2Þ: ð6Þ

The quantity MT
n ðKÞ provides bounds for the tangential derivatives of p

under the normalization jjpjjCðKÞ41: This raises the natural question if
similar results can hold under a weaker assumption jjpjjCðBd KÞ41? A
question of this type was investigated by Bos et al. [2] where it was shown
that on smooth algebraic curves in R2 the tangential Markov factor is of the
size n or n2 depending on whether the curve is closed or not.

In [2] the authors also give an example of a smooth nonclosed curve in R2

on which Markov inequality fails to hold with any factor nr; 8r > 0: We
shall use some ideas from [2] to modify this example for closed smooth
surfaces showing that the normalization jjpjjCðBd KÞ41 does not lead to any
meaningful estimates for jDxpðxÞj when x 2 Bd K and x ? qqfKðxÞ: Thus, we
introduce the quantity *MMnðKÞ defined similarly to MT

n ðKÞ in (2) except that
condition p 2 Pd

nðKÞ (i.e. jjpjjCðKÞ41Þ is replaced by jjpjjCðBd KÞ41; p 2 Pd
n :

Then we have

Theorem 3. For any sequence of numbers gn " 1 there exists a regular

convex body K � Rd such that

lim sup
n!1

*MMnðKÞ
gn

> 0: ð7Þ

Markov-type inequalities which measure the rate of growth of poly-
nomials have numerous applications, for instance, in inverse theorems of
approximation theory, comparison of various norms of polynomials, etc.
Estimate (4) which exhibits an improvement of the order of tangential
Markov factors on smooth surfaces yields corresponding improvements in
applications mentioned above.

2. PROOFS

First, we shall need several auxiliary geometric lemmas which are needed
for the proof of Theorem 1. From now on we assume that K � Rd has a C1-
boundary as defined in Section 1, and fK 2 C1ðDÞ is the corresponding
representation function with modulus of smoothness xK given by (3) ðD*
Bd K is open). Furthermore, we shall denote by cj ; aj; bj constants depending
only on K and d:
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Lemma 1. There exist c1; c2 > 0 such that whenever x 2 Bd K ; for any

y 2 D with jx	 yj4c1 we have

j fKðxÞ 	 fKðyÞ 	 hqqfKðxÞ; x	 yij4c2oKðjx	 yjÞ: ð8Þ

Proof. Let c1 be such that y 2 D if jx	 yj4c1: Clearly for some nj 2 D

with jnj 	 xj4jy	 xj ð14j4dÞ

fKðxÞ 	 fKðyÞ ¼
Xd

j¼1

@fK

@xj

ðnjÞðxj 	 yjÞ;

where x ¼ ðx1; . . . ; xdÞ; y ¼ ðy1; . . . ; ydÞ: Thus,

j fKðxÞ 	 fKðyÞ 	 hqfKðxÞ; x	 yij ¼ j
Xd

j¼1

ð@fK

@xj
ðnjÞ 	 @fK

@xj
ðxÞÞðxj 	 yjÞj

4c2jx	 yjoðqfK ; jx	 yjÞ

¼ c2oKðjx	 yjÞ: ]

In what follows, ½a; b� ¼ fat þ ð1	 tÞb; 04t41g; a; b 2 Rd :

Lemma 2. There exists c0 > 0 such that for every x 2 Bd K we have

½x; x	 c0qqfKðxÞ� � Int K : ð9Þ

Proof. Let c1 be such that y 2 D for jx	 yj4c1 and relation (8) holds.
Then setting y :¼ x	 c1tqqfKðxÞ; 04t41;we have by (8) using that fKðxÞ ¼ 1

fKðyÞ4fKðxÞ 	 hqqfKðxÞ; x	 yi þ c2jx	 yjoðqqfK ; jx	 yjÞ

¼ 1	 c1tjqqfKðxÞj2 þ c3tjqqfKðxÞjoðqqfK ; c1tjqqfKðxÞjÞ: ð10Þ

It remains to recall now that qqfKa0 on Bd K ; i.e.,

Z :¼ inf
*xx2Bd K

jqqfKð *xxÞj > 0: ð11Þ

This and (10) yield now that

fKðyÞ41	 c1Zt þ ctoðqqfK ; tÞ51

if 05t5t0; where t0 depends only on K : ]

For x 2 Bd K and y 2 Rd denote by yx the orthogonal projection of y to
the hyperplane HðxÞ :¼ fz 2 Rd : hz	 x; qqfKðxÞi ¼ 0g:

Lemma 3. There exists c > 0 such that whenever x 2 Bd K ; for every

y 2 Bd K such that jx	 yj4c we have jx	 yj42jx	 yxj:
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Proof. Since fKðxÞ ¼ fKðyÞ ¼ 1 we have by Lemma 1

jhqqfKðxÞ; x	 yij4c2jx	 yjoðqqfK ; jx	 yjÞ: ð12Þ

Furthermore,

jhqqfKðxÞ; x	 yij ¼ jqqfKðxÞj jx	 yj jcos gj ð13Þ

with 04g4p being the angle between qqfKðxÞ and x	 y: Thus by (11)–(13)

jcos gj4c2

Z
oðqqfK ; jx	 yjÞ;

i.e., jcos gj41
2
when jx	 yj4c6 with c6 chosen sufficiently small. Clearly, in

this case

jx	 yj ¼ jx	 yxj
jsin gj 42jx	 yxj: ]

Lemma 4. There exist a1; b1 > 0 such that whenever x 2 Bd K and y 2 Rd

satisfy

jx	 yj4a1; hx	 y; qqfKðxÞi50; ð14Þ

jy	 yxj5b1oKðjx	 yxjÞ ð15Þ

it follows that y 2 K :

Proof. Let y 2 Rd satisfy (14) and (15). Set

y0 :¼ x	 hx	 y; qqfKðxÞi
jqqfKðxÞj2

qqfKðxÞ:

Clearly, y	 y0 ? qqfKðxÞ: Moreover, if jx	 yj4a1 with a1 sufficiently small
by Lemma 2 and (14) y0 2 Int K : Assume now that y =2 K : Then with some
05t51 we have that yn :¼ tyþ ð1	 tÞy0 2 Bd K : As above denote by ynx the
orthogonal projection of yn to HðxÞ: Then by Lemma 1 applied to x; yn 2
Bd K ; and (11)

jy	 yxj ¼ jyn 	 ynxj ¼
jhqqfKðxÞ; yn 	 xij

jqqfKðxÞj
4

c2

Z
oKðjx	 ynjÞ:

In addition, applying Lemma 3 we have jyn 	 xj42jynx 	 xj42jyx 	 xj if
a14c: Using this in the last estimate yields with a proper b1 > 0

jy	 yxj5b1oKðjyx 	 xjÞ:
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Thus (15) fails with this b1; yielding that y 2 K under conditions (14) and
(15). ]

Proof of Theorem 1. Let p 2 Pd
nðKÞ; (i.e., jjpjjCðKÞ41Þ; x 2 Bd K: With-

out loss of generality, we may assume that x ¼ 0 and qqfkðxÞ ¼ qqfkð0Þ ¼
ð	1; 0; . . . ; 0Þ: Now we need to estimate Dxpð0Þ for arbitrary x ? qqfKð0Þ:
Again, it can be assumed that x ¼ ð0; 1; 0; . . . ; 0Þ: (The above assumptions
will hold after proper shifts and rotations.) Now it suffices to consider the
bivariate polynomial

*ppðx; yÞ :¼ pðx; y; 0; . . . ; 0Þ 2 P2
n

which evidently satisfies j *ppðx; yÞj41 when ðx; yÞ 2 *KK :¼ fðx; yÞ 2 R2: ðx; y;
0; . . . ; 0Þ 2 Kg: Note that Dxpð0Þ ¼ @ *pp

@y
ð0Þ: Now we shall apply Lemma 4

which yields, in particular, that whenever ðx; yÞ 2 R2; x2 þ y24a1; x50
(14), and x5b1oKðjyjÞ (15) we have ðx; yÞ 2 *KK: In other words with a
suitable a2 > 0 and b2 :¼ b1oKða2Þ

j *ppðx; yÞj41 if jyj4a2 and b1oKðjyjÞ4x4b2: ð16Þ

Now for arbitrary 05e5a2 consider the ellipse

Ee :¼ ðx; yÞ 2 R2: x ¼ b2

2
ð1	 cos tÞ; y ¼ e sin t; jtj4p

� 	
:

Note that oKðtÞ=t2 ¼ oðqqfK ; tÞ=t; and by a well-known property of moduli
of continuity (applied to oðqqfK ; tÞÞ it can be assumed that oKðtÞ=t2 is
nonincreasing. Clearly, jyj4a2 and 04x4b2 for ðx; yÞ 2 Ee: Therefore (16)
holds for those ðx; yÞ 2 Ee which satisfy the additional condition
x5b1oKðjyjÞ: Evidently,

x ¼ b2

2
ð1	 cos tÞ5b2

p2
t2; jyj ¼ ejsin tj4ejtj ð17Þ

whenever jtj4pððx; yÞ 2 EeÞ: Now set

gn :¼ p

ffiffiffiffiffi
b1

b2

s
1

n
; e :¼ en ¼ 1

gn

o	1
K

1

n2

� �
: ð18Þ

We claim that whenever x ¼ b2
2
ð1	 cos tÞ; y ¼ en sin t (i.e., ðx; yÞ 2 Een

Þ; and
gn4jtj4p it follows that x5b1oKðjyjÞ: Indeed by (17) using that oKðtÞ=t2 is
nonincreasing we have

b1oKðjyjÞ4b1oKðenjtjÞ4b1t2oKðengnÞ=g2n ¼ b1t2

n2g2n
¼ b2t2

p2
4x:
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Thus, whenever x ¼ b2
2
ð1	 cos tÞ; y ¼ en sin t and gn4jtj4p we have that

(16) holds. Set now

gnðtÞ :¼ *pp
b2

2
ð1	 cos tÞ; en sin t

� �
; ð19Þ

whereby the above observation jgnðtÞj41 for every gn4jtj4p: Note that
gn ¼ c=n and gnðtÞ is a univariate trigonometric polynomial of deg4n:

Then by a Remez-type inequality for trigonometric polynomials proved
by Erd!eelyi [4]

max
jtj4p

jgnðtÞj4b5:

Hence using the Bernstein inequality for trigonometric polynomials

jg0
nð0Þj4b5n:

This, (17) and (19) yield

jDxpð0Þj ¼ @ *pp

@y
ð0Þ

����
���� ¼ 1

en

jg0
nð0Þj4

b5n

en

¼ b6

o	1
K ð1=n2Þ:

This completes the proof of Theorem 1. ]

In order to prove Theorem 2, we shall need the following proposition
verified in [7].

Proposition. Let n 2 N; c 2 C½0; 1�; cð0Þ ¼ 0; be an increasing func-

tion of polynomial growth (i.e., x	bcðxÞ is decreasing for some b > 0Þ: Then

there exists a pn 2 P1
n such that

max
04x41

cðxÞjpnðxÞj41 and jpnð0Þj5 C

cð1=n2Þ: ð20Þ

Proof of Theorem 2. Consider the j-ball Bj; where j 2 C2ð0; 1� is
convex, increasing and jðtÞ=t2 is nonincreasing ðjð0Þ ¼ 0Þ: Then with K ¼
Bj; fKðxÞ ¼

Pd
j¼1 jðjxjjÞ ðx ¼ ðx1; . . . ; xdÞÞ we have oKðtÞ 
 jðtÞ: Set c :

¼ j	1 in the above proposition and let pn 2 P1
n; n 2 N satisfy (20) with

c ¼ j	1: Set

pðxÞ :¼ x2p
nð1	 x2

1Þ; x ¼ ðx1; . . . ; xdÞ 2 Rd : ð21Þ

Then whenever x 2 Bj we have jðjx1jÞ þ jðjx2jÞ41; i.e., jx1j41 and

jðjx2jÞ41	 jðjx1jÞ4cð1	 x2
1Þ:
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Hence, it easily follows that

jx2j4j	1ðcð1	 x2
1ÞÞ4c1cð1	 x2

1Þ:

Thus by (20) and (21)

jpðxÞj4c1cð1	 x2
1Þjpnð1	 x2

1Þj4c1: ð22Þ

On the other hand, w :¼ ð0; 1; 0; . . . ; 0Þ is a tangent direction to Bj at x :¼
ð1; 0; . . . ; 0Þ 2 Bd Bj: Moreover, by (20) and (21)

jDwpðxÞj ¼ jpnð0Þj5 c

cð1=n2Þ ¼
c

j	1ð1=n2Þ:

This together with (22) verifies estimate (6). ]

Proof of Theorem 3. Clearly it suffices to verify the statement of the
Theorem for 2 variables, i.e. we may set d ¼ 2: Let gn " 1 be an arbitrary
sequence of positive numbers. Then we can choose a sequence of integers
nk 2 N; so that

n1 ¼ 1; nkþ1 > g22nk
; k ¼ 1; 2; . . . : ð23Þ

Furthermore, set xk :¼ a2	nk ; k ¼ 1; 2; . . . where a ¼ ð
P1

k¼1 2
	nkÞ	1: Then,

evidently,

X1
k¼1

xk ¼ 1;
X1

j¼kþ1

xj42xkþ1; k 2 N: ð24Þ

Finally, consider the function

f ðxÞ :¼
X1
k¼1

xkx2nk ; x 2 ½	1; 1�: ð25Þ

Then f is an even analytic function on ½	1; 1�; f ð0Þ ¼ 0 and f ð1Þ ¼ 1:
Moreover, setting

K :¼ fðx; yÞ 2 R2: f ðxÞ þ y241g

it can be easily shown that K is a regular convex body in R2:
Consider now the polynomial

gkðx; yÞ :¼ 1	 pkðxÞ 	 y2 2 P2
2nk

;
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where

pkðxÞ :¼
Xk

i¼1

xix
2ni 2 P1

2nk
:

Then for every ðx; yÞ 2 Bd K ¼ fðx; yÞ 2 R2: f ðxÞ þ y2 ¼ 1g we have jxj41;
and by (25) and (24)

jgkðx; yÞj ¼ j1	 y2 	 pkðxÞj ¼ j f ðxÞ 	 pkðxÞj

4
X1

i¼kþ1

xix
2ni

�����
�����4

X1
i¼kþ1

xi42xkþ1:

Hence for every k 2 N

jjgkjjCðBd KÞ42xkþ1: ð26Þ

Clearly, at any ðx; yÞ 2 Bd K the tangent directions to Bd K are given by

x :¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4y2 þ j f 0ðxÞj2

q ð2y;	f 0ðxÞÞ 2 S1:

Therefore

jDxgkj ¼ jhqqgk;xij ¼ 2jyjj f 0ðxÞ 	 p0
kðxÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4y2 þ j f 0ðxÞj2
q ; ðx; yÞ 2 Bd K :

Moreover, jyj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 f ðxÞ

p
on Bd K ; and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4y2 þ j f 0ðxÞj2

q
4c1 on K : Thus

using the above relation

jDxgkðx; yÞj5c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 f ðxÞ

p
j f 0ðxÞ 	 p0

kðxÞj; ðx; yÞ 2 Bd K : ð27Þ

Obviously, with some a > 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 f ðxÞ

p
5a

ffiffiffiffiffiffiffiffiffiffiffi
1	 x

p
ð1
2
4x41Þ

and for every 04x41:

j f 0ðxÞ 	 p0
kðxÞj ¼

X1
i¼kþ1

xi2nix
2ni	15xkþ1nkþ1x2nkþ1	1:
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Using the last two estimates in (27) yields that for any ðx; yÞ 2 Bd K with
1
2
4x41

jDxgkðx; yÞj5c3xkþ1nkþ1x
2nkþ1	1

ffiffiffiffiffiffiffiffiffiffiffi
1	 x

p
: ð28Þ

Now setting xn :¼ 2nkþ1	1
2nkþ1

and yn :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 f ðxnÞ

p
in (28) we have

jDxgkðxn; ynÞj5c4xkþ1

ffiffiffiffiffiffiffiffiffi
nkþ1

p
:

Finally, by (23) and (26)

jDxgkðxn; ynÞj5c4xkþ1g2nk
5

c4

2
g2nk

jjgkjjCðBd KÞ;

where gk 2 P2
2nk

; ðxn; ynÞ 2 Bd K and x is a tangent direction to Bd K at
ðxn; ynÞ: The proof of Theorem 3 is completed. ]
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