Markov-type Inequalities for Surface Gradients of Multivariate Polynomials

András Kroó ${ }^{1}$
Alfréd Rényi Mathematical Institute of the Hungarian Academy of Sciences, Budapest, Reáltanoda u. 13-15 H-1053, Hungary
E-mail: kroo@renyi.hu, kroo@math-inst.hu
Communicated by Tamás Erdélyi

Received August 7, 2001; accepted in revised form June 26, 2002

Abstract

Let $K \subset \mathbb{R}^{d}$ be a compact set with a smooth boundary and consider a polynomial p of total degree $\leqslant n$ such that $\|p\|_{C(K)} \leqslant 1$. Then we show that $\left|D_{T} p(\mathbf{x})\right|=o\left(n^{2}\right)$ for any $\mathbf{x} \in B d K$ and T a tangential direction at \mathbf{x}. Moreover, the $o\left(n^{2}\right)$ term is given in terms of the modulus of smoothness of $B d K$. © 2002 Elsevier Science (USA) Key Words: multivariate polynomials; gradients; smooth domains..

1. INTRODUCTION

Let $K \subset \mathbb{R}^{d}$ be a compact set, and consider the set P_{n}^{d} of real algebraic polynomials of d variables and total degree $\leqslant n$. Denote by

$$
P_{n}^{d}(K):=\left\{p \in P_{n}^{d}:\|p\|_{C(K)} \leqslant 1\right\}
$$

the unit ball in P_{n}^{d} with respect to the uniform norm $\|p\|_{C(K)}:=\max _{\mathbf{x} \in K}$ $|p(\mathbf{x})|$. Furthermore, let $D_{\boldsymbol{\omega}} g$ denote the derivative of $g \in P_{n}^{d}$ in direction $\boldsymbol{\omega} \in S^{d-1}$, where S^{d-1} is the Euclidian unit sphere in \mathbb{R}^{d}. Then the Markov factor of the set K of order n is defined as

$$
\begin{equation*}
M_{n}(K):=\max \left\{\left\|D_{\omega} p\right\|_{C(K)}: p \in P_{n}^{d}(K), \omega \in S^{d-1}\right\} \tag{1}
\end{equation*}
$$

It is well known that $M_{n}(K) \sim n^{2}$ for convex bodies $K \subset \mathbb{R}^{d}$, moreover even sharp constants are established for convex bodies. (In univariate case this dates back to Markov [9], for multivariate convex bodies see [6, 12, 13, 15].) It is also known that for cuspidal domains the Markov factors are generally

[^0]of larger (but subexponential) magnitude (see [1, 5, 7, 8, 10, 14] for details). On the other hand, the classical Bernstein Inequality for trigonometric polynomials yields that if $p \in P_{n}^{d}\left(S^{d-1}\right), \mathbf{x} \in S^{d-1}$, and $\boldsymbol{\omega}$ is a tangential direction to S^{d-1} at x then
$$
\left|D_{\boldsymbol{\omega}} p(\mathbf{x})\right| \leqslant n .
$$

This simple example shows that we might expect an improvement when only tangential derivatives at the boundary points are considered. Let us introduce the corresponding modification of the Markov factor (1). We shall consider compact sets $K \subset \mathbb{R}^{d}$ with C^{1}-smooth boundary (as usual $B d K$ and Int K stand for the boundary and interior of K, respectively). We shall say that a compact set $K \subset \mathbb{R}^{d}($ Int $K \neq \emptyset)$ has a C^{1} boundary if there exist an open set $D \supset B d K$ and a representation function $f_{K} \in C^{1}(D)$ such that $f_{K}(\mathbf{x})=1$ for $\mathbf{x} \in B d K ; f_{K}(\mathbf{x})<1$ if $\mathbf{x} \in \operatorname{Int} K \cap D$ and $\partial f_{K}(\mathbf{x}) \neq 0$ for $x \in B d K$, where ∂f_{K} is the gradient of f_{K}.

In the special case, when K is convex, the natural choice for f_{K} is the socalled Minkowski functional (see the examples and remarks following Theorem 1).

Clearly, $\partial f_{K}(\mathbf{x})$ provides the outer normal direction to $B d K$ at $\mathbf{x} \in B d K$. Hence, the tangential directions $\boldsymbol{\omega} \in S^{d-1}$ at $\mathbf{x} \in B d K$ satisfy $\boldsymbol{\omega} \perp \partial f_{K}(\mathbf{x})$.

Now the tangential Markov factor of a C^{1}-domain can be introduced as

$$
\begin{equation*}
M_{n}^{T}(K):=\max \left\{\left|D_{\boldsymbol{\omega}} p(\mathbf{x})\right|: p \in P_{n}^{d}(K), \mathbf{x} \in B d K, \boldsymbol{\omega} \perp \partial f_{K}(\mathbf{x})\right\} \tag{2}
\end{equation*}
$$

The essential difference between (1) and (2) consists in the fact that instead of all directions $\boldsymbol{\omega} \in S^{d-1}$ only tangential directions $\boldsymbol{\omega} \perp \partial f_{K}(\mathbf{x})$ at $\mathbf{x} \in B d K$ are considered. This modification will yield a substantial improvement in the rate of Markov factors. Let

$$
\omega\left(\partial f_{K}, t\right):=\sup \left\{\left|\partial f_{K}\left(\mathbf{x}_{1}\right)-\partial f_{K}\left(\mathbf{x}_{2}\right)\right|: \quad \mathbf{x}_{1}, \mathbf{x}_{2} \in D, \quad\left|\mathbf{x}_{1}-\mathbf{x}_{2}\right| \leqslant t\right\}
$$

be the modulus of continuity of ∂f_{K} on D, where K, f_{K}, and D are as above.

This function satisfies the usual properties of moduli of continuity, e.g.,

$$
\omega\left(\partial f_{K}, c t\right) \leqslant(1+c) \omega\left(\partial f_{K}, t\right), \quad t, c>0
$$

Moreover, denote by $\omega_{K}(t)$ the modulus of smoothness of $B d K$

$$
\begin{equation*}
\omega_{K}(t):=t \omega\left(\partial f_{K}, t\right) \tag{3}
\end{equation*}
$$

Then we have the following:
Theorem 1. Let $K \subset \mathbb{R}^{d}$, Int $K \neq \emptyset$, be a compact set with a C^{1} boundary. Then

$$
\begin{equation*}
M_{n}^{T}(K) \leqslant \frac{c}{\omega_{K}^{-1}\left(\frac{1}{n^{2}}\right)}, \quad n \in \mathbb{N} \tag{4}
\end{equation*}
$$

with some constant $c>0$ depending only on K and d.
Note that $\omega_{K}(t)=o(t)$ for a C^{1}-domain, i.e., estimate (4) yields that $M_{n}^{T}(K)=o\left(n^{2}\right)$. Recalling that $M_{n}(K) \sim n^{2}$ even for balls in \mathbb{R}^{d} we can see that tangential Markov factors have smaller magnitudes. In particular, if $\omega_{K}(t) \sim t^{p}, 1<p \leqslant 2$ (this is the case when, for instance, K is an ℓ_{p}-ball) we have $M_{n}^{T}(K)=O\left(n^{2 / p}\right)$. We shall also see further that (4) is sharp, in general.

In the special case when $K \subset \mathbb{R}^{d}$ is a convex body, the C^{1}-smoothness of the boundary holds whenever K is regular, i.e., there is a unique supporting hyperplane to K at every $\mathbf{x} \in B d K$ (see [3, p. 449]). In this case for any fixed $\mathbf{x}_{0} \in$ Int K the corresponding Minkowski functional

$$
\begin{equation*}
f_{K}(\mathbf{x}):=\inf \left\{\alpha>0: \frac{\mathbf{x}-\mathbf{x}_{0}}{\alpha} \in K\right\} \tag{5}
\end{equation*}
$$

can be used in (3). This yields.
Corollary 1. Let $K \subset \mathbb{R}^{d}$ be a regular convex body with f_{K} given by (5). Then (4) holds with some $c>0$ depending only on K and d.

Thus, in particular, $M_{n}^{T}(K)=o\left(n^{2}\right)$ whenever K is a regular convex body. (This later statement was also obtained by Revesz [11].)

As a model of regular convex bodies consider the so-called " φ-ball" defined as

$$
B_{\varphi}:=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}: \sum_{j=1}^{d} \varphi\left(\left|x_{j}\right|\right) \leqslant 1\right\}
$$

where $\varphi \in C^{2}(0,1]$ is a strictly increasing convex continuous function on $[0,1], \varphi(0)=0, \varphi(1)=1$. Assuming, in addition, that $\varphi(t) / t^{2}$ is a decreasing function on $(0,1]$ it is easy to show that for $K=B_{\varphi}$, we have $\omega_{K}(t) \sim \varphi(t)$. Moreover, we have the following converse to (4) which shows that Theorem 1 provides in general the best bound possible.

Theorem 2. There exists $c_{1}>0$ so that

$$
\begin{equation*}
M_{n}^{T}\left(B_{\varphi}\right) \geqslant \frac{c_{1}}{\varphi^{-1}\left(1 / n^{2}\right)} \tag{6}
\end{equation*}
$$

The quantity $M_{n}^{T}(K)$ provides bounds for the tangential derivatives of p under the normalization $\|p\|_{C(K)} \leqslant 1$. This raises the natural question if similar results can hold under a weaker assumption $\|p\|_{C(B d K)} \leqslant 1$? A question of this type was investigated by Bos et al. [2] where it was shown that on smooth algebraic curves in \mathbb{R}^{2} the tangential Markov factor is of the size n or n^{2} depending on whether the curve is closed or not.

In [2] the authors also give an example of a smooth nonclosed curve in \mathbb{R}^{2} on which Markov inequality fails to hold with any factor $n^{r}, \forall r>0$. We shall use some ideas from [2] to modify this example for closed smooth surfaces showing that the normalization $\|p\|_{C(B d K)} \leqslant 1$ does not lead to any meaningful estimates for $\left|D_{\omega} p(\mathbf{x})\right|$ when $\mathbf{x} \in B d K$ and $\boldsymbol{\omega} \perp \partial f_{K}(\mathbf{x})$. Thus, we introduce the quantity $\tilde{M}_{n}(K)$ defined similarly to $M_{n}^{T}(K)$ in (2) except that condition $p \in P_{n}^{d}(K)$ (i.e. $\left.\|p\|_{C(K)} \leqslant 1\right)$ is replaced by $\|p\|_{C(B d K)} \leqslant 1, p \in P_{n}^{d}$. Then we have

Theorem 3. For any sequence of numbers $\gamma_{n} \uparrow \infty$ there exists a regular convex body $K \subset \mathbb{R}^{d}$ such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\tilde{M}_{n}(K)}{\gamma_{n}}>0 . \tag{7}
\end{equation*}
$$

Markov-type inequalities which measure the rate of growth of polynomials have numerous applications, for instance, in inverse theorems of approximation theory, comparison of various norms of polynomials, etc. Estimate (4) which exhibits an improvement of the order of tangential Markov factors on smooth surfaces yields corresponding improvements in applications mentioned above.

2. PROOFS

First, we shall need several auxiliary geometric lemmas which are needed for the proof of Theorem 1 . From now on we assume that $K \subset \mathbb{R}^{d}$ has a C^{1} boundary as defined in Section 1 , and $f_{K} \in C^{1}(D)$ is the corresponding representation function with modulus of smoothness $\boldsymbol{\omega}_{K}$ given by (3) (D つ $B d K$ is open). Furthermore, we shall denote by c_{j}, a_{j}, b_{j} constants depending only on K and d.

Lemma 1. There exist $c_{1}, c_{2}>0$ such that whenever $\mathbf{x} \in B d K$, for any $\mathbf{y} \in D$ with $|\mathbf{x}-\mathbf{y}| \leqslant c_{1}$ we have

$$
\begin{equation*}
\left|f_{K}(\mathbf{x})-f_{K}(\mathbf{y})-\left\langle\partial f_{K}(\mathbf{x}), \mathbf{x}-\mathbf{y}\right\rangle\right| \leqslant c_{2} \omega_{K}(|\mathbf{x}-\mathbf{y}|) \tag{8}
\end{equation*}
$$

Proof. Let c_{1} be such that $\mathbf{y} \in D$ if $|\mathbf{x}-\mathbf{y}| \leqslant c_{1}$. Clearly for some $\xi_{j} \in D$ with $\left|\xi_{j}-\mathbf{x}\right| \leqslant|\mathbf{y}-\mathbf{x}|(1 \leqslant j \leqslant d)$

$$
f_{K}(\mathbf{x})-f_{K}(\mathbf{y})=\sum_{j=1}^{d} \frac{\partial f_{K}}{\partial x_{j}}\left(\xi_{j}\right)\left(x_{j}-y_{j}\right),
$$

where $\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{d}\right)$. Thus,

$$
\begin{aligned}
\left|f_{K}(\mathbf{x})-f_{K}(\mathbf{y})-\left\langle\partial f_{K}(\mathbf{x}), \mathbf{x}-\mathbf{y}\right\rangle\right| & =\left|\sum_{j=1}^{d}\left(\frac{\partial f_{K}}{\partial x_{j}}\left(\xi_{j}\right)-\frac{\partial f_{K}}{\partial x_{j}}(\mathbf{x})\right)\left(x_{j}-y_{j}\right)\right| \\
& \leqslant c_{2}|\mathbf{x}-\mathbf{y}| \omega\left(\partial f_{K},|\mathbf{x}-\mathbf{y}|\right) \\
& =c_{2} \omega_{K}(|\mathbf{x}-\mathbf{y}|) .
\end{aligned}
$$

In what follows, $[\boldsymbol{a}, \boldsymbol{b}]=\{\boldsymbol{a} t+(1-t) \boldsymbol{b}, 0 \leqslant t \leqslant 1\}, \boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^{d}$.
Lemma 2. There exists $c_{0}>0$ such that for every $\mathbf{x} \in B d K$ we have

$$
\begin{equation*}
\left[\mathbf{x}, \mathbf{x}-c_{0} \partial f_{K}(\mathbf{x})\right] \subset \operatorname{Int} K . \tag{9}
\end{equation*}
$$

Proof. Let c_{1} be such that $\mathbf{y} \in D$ for $|\mathbf{x}-\mathbf{y}| \leqslant c_{1}$ and relation (8) holds. Then setting $\mathbf{y}:=\mathbf{x}-c_{1} t \partial f_{K}(\mathbf{x}), 0 \leqslant t \leqslant 1$, we have by (8) using that $f_{K}(\mathbf{x})=1$

$$
\begin{gather*}
f_{K}(\mathbf{y}) \leqslant f_{K}(\mathbf{x})-\left\langle\partial f_{K}(\mathbf{x}), \mathbf{x}-\mathbf{y}\right\rangle+c_{2}|\mathbf{x}-\mathbf{y}| \omega\left(\partial f_{K},|\mathbf{x}-\mathbf{y}|\right) \\
=1-c_{1} t\left|\partial f_{K}(\mathbf{x})\right|^{2}+c_{3} t\left|\partial f_{K}(\mathbf{x})\right| \omega\left(\partial f_{K}, c_{1} t\left|\partial f_{K}(\mathbf{x})\right|\right) \tag{10}
\end{gather*}
$$

It remains to recall now that $\partial f_{K} \neq 0$ on $B d K$, i.e.,

$$
\begin{equation*}
\eta:=\inf _{\tilde{\mathbf{x}} \in B d K}\left|\partial f_{K}(\tilde{\mathbf{x}})\right|>0 \tag{11}
\end{equation*}
$$

This and (10) yield now that

$$
f_{K}(\mathbf{y}) \leqslant 1-c_{1} \eta t+c t \omega\left(\partial f_{K}, t\right)<1
$$

if $0<t<t_{0}$, where t_{0} depends only on K.
For $\mathbf{x} \in B d K$ and $\mathbf{y} \in \mathbb{R}^{d}$ denote by $\mathbf{y}_{\mathbf{x}}$ the orthogonal projection of \mathbf{y} to the hyperplane $H(\mathbf{x}):=\left\{\mathbf{z} \in \mathbb{R}^{d}:\left\langle\mathbf{z}-\mathbf{x}, \partial f_{K}(\mathbf{x})\right\rangle=0\right\}$.

Lemma 3. There exists $c>0$ such that whenever $\mathbf{x} \in B d K$, for every $\mathbf{y} \in B d K$ such that $|\mathbf{x}-\mathbf{y}| \leqslant c$ we have $|\mathbf{x}-\mathbf{y}| \leqslant 2\left|\mathbf{x}-\mathbf{y}_{\mathbf{x}}\right|$.

Proof. Since $f_{K}(\mathbf{x})=f_{K}(\mathbf{y})=1$ we have by Lemma 1

$$
\begin{equation*}
\left|\left\langle\partial f_{K}(\mathbf{x}), \mathbf{x}-\mathbf{y}\right\rangle\right| \leqslant c_{2}|\mathbf{x}-\mathbf{y}| \omega\left(\partial f_{K},|\mathbf{x}-\mathbf{y}|\right) \tag{12}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
\left|\left\langle\partial f_{K}(\mathbf{x}), \mathbf{x}-\mathbf{y}\right\rangle\right|=\left|\partial f_{K}(\mathbf{x})\right||\mathbf{x}-\mathbf{y}||\cos \gamma| \tag{13}
\end{equation*}
$$

with $0 \leqslant \gamma \leqslant \pi$ being the angle between $\partial f_{K}(\mathbf{x})$ and $\mathbf{x}-\mathbf{y}$. Thus by (11)-(13)

$$
|\cos \gamma| \leqslant \frac{c_{2}}{\eta} \omega\left(\partial f_{K},|\mathbf{x}-\mathbf{y}|\right)
$$

i.e., $|\cos \gamma| \leqslant \frac{1}{2}$ when $|\mathbf{x}-\mathbf{y}| \leqslant c_{6}$ with c_{6} chosen sufficiently small. Clearly, in this case

$$
|\mathbf{x}-\mathbf{y}|=\frac{\left|\mathbf{x}-\mathbf{y}_{\mathbf{x}}\right|}{|\sin \gamma|} \leqslant 2\left|\mathbf{x}-\mathbf{y}_{\mathbf{x}}\right| .
$$

Lemma 4. There exist $a_{1}, b_{1}>0$ such that whenever $\mathbf{x} \in B d K$ and $\mathbf{y} \in \mathbb{R}^{d}$ satisfy

$$
\begin{gather*}
|\mathbf{x}-\mathbf{y}| \leqslant a_{1}, \quad\left\langle\mathbf{x}-\mathbf{y}, \partial f_{K}(\mathbf{x})\right\rangle \geqslant 0 \tag{14}\\
\left|\mathbf{y}-\mathbf{y}_{\mathbf{x}}\right| \geqslant b_{1} \omega_{K}\left(\left|\mathbf{x}-\mathbf{y}_{\mathbf{x}}\right|\right) \tag{15}
\end{gather*}
$$

it follows that $\mathbf{y} \in K$.
Proof. Let $\mathbf{y} \in \mathbb{R}^{d}$ satisfy (14) and (15). Set

$$
\mathbf{y}_{0}:=\mathbf{x}-\frac{\left\langle\mathbf{x}-\mathbf{y}, \partial f_{K}(\mathbf{x})\right\rangle}{\left|\partial f_{K}(\mathbf{x})\right|^{2}} \partial f_{K}(\mathbf{x})
$$

Clearly, $\mathbf{y}-\mathbf{y}_{0} \perp \partial f_{K}(\mathbf{x})$. Moreover, if $|\mathbf{x}-\mathbf{y}| \leqslant a_{1}$ with a_{1} sufficiently small by Lemma 2 and (14) $\mathbf{y}_{0} \in$ Int K. Assume now that $\mathbf{y} \notin K$. Then with some $0<t<1$ we have that $\mathbf{y}^{*}:=t \mathbf{y}+(1-t) \mathbf{y}_{0} \in B d K$. As above denote by $\mathbf{y}_{\mathbf{x}}^{*}$ the orthogonal projection of \mathbf{y}^{*} to $H(\mathbf{x})$. Then by Lemma 1 applied to $\mathbf{x}, \mathbf{y}^{*} \in$ $B d K$, and (11)

$$
\left|\mathbf{y}-\mathbf{y}_{\mathbf{x}}\right|=\left|\mathbf{y}^{*}-\mathbf{y}_{\mathbf{x}}^{*}\right|=\frac{\left|\left\langle\partial f_{K}(\mathbf{x}), \mathbf{y}^{*}-\mathbf{x}\right\rangle\right|}{\left|\partial f_{K}(\mathbf{x})\right|} \leqslant \frac{c_{2}}{\eta} \omega_{K}\left(\left|\mathbf{x}-\mathbf{y}^{*}\right|\right) .
$$

In addition, applying Lemma 3 we have $\left|\mathbf{y}^{*}-\mathbf{x}\right| \leqslant 2\left|\mathbf{y}_{\mathbf{x}}^{*}-\mathbf{x}\right| \leqslant 2\left|\mathbf{y}_{\mathbf{x}}-\mathbf{x}\right|$ if $a_{1} \leqslant c$. Using this in the last estimate yields with a proper $b_{1}>0$

$$
\left|\mathbf{y}-\mathbf{y}_{\mathbf{x}}\right|<b_{1} \omega_{K}\left(\left|\mathbf{y}_{\mathbf{x}}-\mathbf{x}\right|\right) .
$$

Thus (15) fails with this b_{1}, yielding that $\mathbf{y} \in K$ under conditions (14) and (15).

Proof of Theorem 1. Let $p \in P_{n}^{d}(K)$, (i.e., $\left.\|p\|_{C(K)} \leqslant 1\right), \mathbf{x} \in B d K$. Without loss of generality, we may assume that $\mathbf{x}=\mathbf{0}$ and $\partial f_{k}(\mathbf{x})=\partial f_{k}(\mathbf{0})=$ $(-1,0, \ldots, 0)$. Now we need to estimate $D_{\boldsymbol{\omega}} p(\mathbf{0})$ for arbitrary $\boldsymbol{\omega} \perp \partial f_{K}(\mathbf{0})$. Again, it can be assumed that $\boldsymbol{\omega}=(0,1,0, \ldots, 0)$. (The above assumptions will hold after proper shifts and rotations.) Now it suffices to consider the bivariate polynomial

$$
\tilde{p}(x, y):=p(x, y, 0, \ldots, 0) \in P_{n}^{2}
$$

which evidently satisfies $|\tilde{p}(x, y)| \leqslant 1$ when $(x, y) \in \tilde{K}:=\left\{(x, y) \in \mathbb{R}^{2}:(x, y\right.$, $0, \ldots, 0) \in K\}$. Note that $D_{\boldsymbol{\omega}} p(\mathbf{0})=\frac{\partial \tilde{p}}{\partial y}(\mathbf{0})$. Now we shall apply Lemma 4 which yields, in particular, that whenever $(x, y) \in \mathbb{R}^{2}, x^{2}+y^{2} \leqslant a_{1}, x \geqslant 0$ (14), and $x \geqslant b_{1} \omega_{K}(|y|)$ (15) we have $(x, y) \in \tilde{K}$. In other words with a suitable $a_{2}>0$ and $b_{2}:=b_{1} \omega_{K}\left(a_{2}\right)$

$$
\begin{equation*}
|\tilde{p}(x, y)| \leqslant 1 \text { if }|y| \leqslant a_{2} \quad \text { and } \quad b_{1} \omega_{K}(|y|) \leqslant x \leqslant b_{2} . \tag{16}
\end{equation*}
$$

Now for arbitrary $0<\varepsilon<a_{2}$ consider the ellipse

$$
E_{\varepsilon}:=\left\{(x, y) \in \mathbb{R}^{2}: x=\frac{b_{2}}{2}(1-\cos t), y=\varepsilon \sin t,|t| \leqslant \pi\right\}
$$

Note that $\omega_{K}(t) / t^{2}=\omega\left(\partial f_{K}, t\right) / t$, and by a well-known property of moduli of continuity (applied to $\omega\left(\partial f_{K}, t\right)$) it can be assumed that $\omega_{K}(t) / t^{2}$ is nonincreasing. Clearly, $|y| \leqslant a_{2}$ and $0 \leqslant x \leqslant b_{2}$ for $(x, y) \in E_{\varepsilon}$. Therefore (16) holds for those $(x, y) \in E_{\varepsilon}$ which satisfy the additional condition $x \geqslant b_{1} \omega_{K}(|y|)$. Evidently,

$$
\begin{equation*}
x=\frac{b_{2}}{2}(1-\cos t) \geqslant \frac{b_{2}}{\pi^{2}} t^{2}, \quad|y|=\varepsilon|\sin t| \leqslant \varepsilon|t| \tag{17}
\end{equation*}
$$

whenever $|t| \leqslant \pi\left((x, y) \in E_{\varepsilon}\right)$. Now set

$$
\begin{equation*}
\gamma_{n}:=\pi \sqrt{\frac{b_{1}}{b_{2}}} \frac{1}{n}, \quad \varepsilon:=\varepsilon_{n}=\frac{1}{\gamma_{n}} \omega_{K}^{-1}\left(\frac{1}{n^{2}}\right) . \tag{18}
\end{equation*}
$$

We claim that whenever $x=\frac{b_{2}}{2}(1-\cos t), y=\varepsilon_{n} \sin t$ (i.e., $(x, y) \in E_{\varepsilon_{n}}$), and $\gamma_{n} \leqslant|t| \leqslant \pi$ it follows that $x \geqslant b_{1} \omega_{K}(|y|)$. Indeed by (17) using that $\omega_{K}(t) / t^{2}$ is nonincreasing we have

$$
b_{1} \omega_{K}(|y|) \leqslant b_{1} \omega_{K}\left(\varepsilon_{n}|t|\right) \leqslant b_{1} t^{2} \omega_{K}\left(\varepsilon_{n} \gamma_{n}\right) / \gamma_{n}^{2}=\frac{b_{1} t^{2}}{n^{2} \gamma_{n}^{2}}=\frac{b_{2} t^{2}}{\pi^{2}} \leqslant x
$$

Thus, whenever $x=\frac{b_{2}}{2}(1-\cos t), y=\varepsilon_{n} \sin t$ and $\gamma_{n} \leqslant|t| \leqslant \pi$ we have that (16) holds. Set now

$$
\begin{equation*}
g_{n}(t):=\tilde{p}\left(\frac{b_{2}}{2}(1-\cos t), \varepsilon_{n} \sin t\right) \tag{19}
\end{equation*}
$$

whereby the above observation $\left|g_{n}(t)\right| \leqslant 1$ for every $\gamma_{n} \leqslant|t| \leqslant \pi$. Note that $\gamma_{n}=c / n$ and $g_{n}(t)$ is a univariate trigonometric polynomial of deg $\leqslant n$.

Then by a Remez-type inequality for trigonometric polynomials proved by Erdélyi [4]

$$
\max _{|t| \leqslant \pi}\left|g_{n}(t)\right| \leqslant b_{5}
$$

Hence using the Bernstein inequality for trigonometric polynomials

$$
\left|g_{n}^{\prime}(0)\right| \leqslant b_{5} n .
$$

This, (17) and (19) yield

$$
\left|D_{\omega} p(\mathbf{0})\right|=\left|\frac{\partial \tilde{p}}{\partial y}(\mathbf{0})\right|=\frac{1}{\varepsilon_{n}}\left|g_{n}^{\prime}(0)\right| \leqslant \frac{b_{5} n}{\varepsilon_{n}}=\frac{b_{6}}{\omega_{K}^{-1}\left(1 / n^{2}\right)}
$$

This completes the proof of Theorem 1.
In order to prove Theorem 2, we shall need the following proposition verified in [7].

Proposition. Let $n \in \mathbb{N}, \psi \in C[0,1], \psi(0)=0$, be an increasing function of polynomial growth (i.e., $x^{-\beta} \psi(x)$ is decreasing for some $\beta>0$). Then there exists a $p^{*} \in P_{n}^{1}$ such that

$$
\begin{equation*}
\max _{0 \leqslant x \leqslant 1} \psi(x)\left|p^{*}(x)\right| \leqslant 1 \quad \text { and } \quad\left|p^{*}(0)\right| \geqslant \frac{C}{\psi\left(1 / n^{2}\right)} \tag{20}
\end{equation*}
$$

Proof of Theorem 2. Consider the φ-ball B_{φ}, where $\varphi \in C^{2}(0,1]$ is convex, increasing and $\varphi(t) / t^{2}$ is nonincreasing $(\varphi(0)=0)$. Then with $K=$ $B_{\varphi}, f_{K}(\mathbf{x})=\sum_{j=1}^{d} \varphi\left(\left|x_{j}\right|\right)\left(\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right)\right)$ we have $\omega_{K}(t) \sim \varphi(t)$. Set $\psi:$ $=\varphi^{-1}$ in the above proposition and let $p^{*} \in P_{n}^{1}, n \in \mathbb{N}$ satisfy (20) with $\psi=\varphi^{-1}$. Set

$$
\begin{equation*}
p(\mathbf{x}):=x_{2} p^{*}\left(1-x_{1}^{2}\right), \quad \mathbf{x}=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d} \tag{21}
\end{equation*}
$$

Then whenever $\mathbf{x} \in B_{\varphi}$ we have $\varphi\left(\left|x_{1}\right|\right)+\varphi\left(\left|x_{2}\right|\right) \leqslant 1$, i.e., $\left|x_{1}\right| \leqslant 1$ and

$$
\varphi\left(\left|x_{2}\right|\right) \leqslant 1-\varphi\left(\left|x_{1}\right|\right) \leqslant c\left(1-x_{1}^{2}\right) .
$$

Hence, it easily follows that

$$
\left|x_{2}\right| \leqslant \varphi^{-1}\left(c\left(1-x_{1}^{2}\right)\right) \leqslant c_{1} \psi\left(1-x_{1}^{2}\right)
$$

Thus by (20) and (21)

$$
\begin{equation*}
|p(\mathbf{x})| \leqslant c_{1} \psi\left(1-x_{1}^{2}\right)\left|p^{*}\left(1-x_{1}^{2}\right)\right| \leqslant c_{1} \tag{22}
\end{equation*}
$$

On the other hand, $\mathbf{w}:=(0,1,0, \ldots, 0)$ is a tangent direction to B_{φ} at $\mathbf{x}:=$ $(1,0, \ldots, 0) \in B d B_{\varphi}$. Moreover, by (20) and (21)

$$
\left|D_{\mathbf{w}} p(\mathbf{x})\right|=\left|p^{*}(0)\right| \geqslant \frac{c}{\psi\left(1 / n^{2}\right)}=\frac{c}{\varphi^{-1}\left(1 / n^{2}\right)}
$$

This together with (22) verifies estimate (6).
Proof of Theorem 3. Clearly it suffices to verify the statement of the Theorem for 2 variables, i.e. we may set $d=2$. Let $\gamma_{n} \uparrow \infty$ be an arbitrary sequence of positive numbers. Then we can choose a sequence of integers $n_{k} \in \mathbb{N}$, so that

$$
\begin{equation*}
n_{1}=1, \quad n_{k+1}>\gamma_{2 n_{k}}^{2}, \quad k=1,2, \ldots \tag{23}
\end{equation*}
$$

Furthermore, set $\xi_{k}:=a 2^{-n_{k}}, k=1,2, \ldots$ where $a=\left(\sum_{k=1}^{\infty} 2^{-n_{k}}\right)^{-1}$. Then, evidently,

$$
\begin{equation*}
\sum_{k=1}^{\infty} \xi_{k}=1, \quad \sum_{j=k+1}^{\infty} \xi_{j} \leqslant 2 \xi_{k+1}, \quad k \in \mathbb{N} \tag{24}
\end{equation*}
$$

Finally, consider the function

$$
\begin{equation*}
f(x):=\sum_{k=1}^{\infty} \xi_{k} x^{2 n_{k}}, \quad x \in[-1,1] \tag{25}
\end{equation*}
$$

Then f is an even analytic function on $[-1,1], f(0)=0$ and $f(1)=1$. Moreover, setting

$$
K:=\left\{(x, y) \in \mathbb{R}^{2}: f(x)+y^{2} \leqslant 1\right\}
$$

it can be easily shown that K is a regular convex body in \mathbb{R}^{2}.
Consider now the polynomial

$$
g_{k}(x, y):=1-p_{k}(x)-y^{2} \in P_{2 n_{k}}^{2}
$$

where

$$
p_{k}(x):=\sum_{i=1}^{k} \xi_{i} x^{2 n_{i}} \in P_{2 n_{k}}^{1} .
$$

Then for every $(x, y) \in B d K=\left\{(x, y) \in \mathbb{R}^{2}: f(x)+y^{2}=1\right\}$ we have $|x| \leqslant 1$, and by (25) and (24)

$$
\begin{aligned}
\left|g_{k}(x, y)\right| & =\left|1-y^{2}-p_{k}(x)\right|=\left|f(x)-p_{k}(x)\right| \\
& \leqslant\left|\sum_{i=k+1}^{\infty} \xi_{i} x^{2 n_{i}}\right| \leqslant \sum_{i=k+1}^{\infty} \xi_{i} \leqslant 2 \xi_{k+1}
\end{aligned}
$$

Hence for every $k \in \mathbb{N}$

$$
\begin{equation*}
\left\|g_{k}\right\|_{C(B d K)} \leqslant 2 \xi_{k+1} \tag{26}
\end{equation*}
$$

Clearly, at any $(x, y) \in B d K$ the tangent directions to $B d K$ are given by

$$
\omega:= \pm \frac{1}{\sqrt{4 y^{2}+\left|f^{\prime}(x)\right|^{2}}}\left(2 y,-f^{\prime}(x)\right) \in S^{1}
$$

Therefore

$$
\left|D_{\boldsymbol{\omega}} g_{k}\right|=\left|\left\langle\partial g_{k}, \boldsymbol{\omega}\right\rangle\right|=\frac{2|y|\left|f^{\prime}(x)-p_{k}^{\prime}(x)\right|}{\sqrt{4 y^{2}+\left|f^{\prime}(x)\right|^{2}}}, \quad(x, y) \in B d K
$$

Moreover, $|y|=\sqrt{1-f(x)}$ on $B d K$, and $\sqrt{4 y^{2}+\left|f^{\prime}(x)\right|^{2}} \leqslant c_{1}$ on K. Thus using the above relation

$$
\begin{equation*}
\left|D_{\omega} g_{k}(x, y)\right| \geqslant c_{2} \sqrt{1-f(x)}\left|f^{\prime}(x)-p_{k}^{\prime}(x)\right|, \quad(x, y) \in B d K \tag{27}
\end{equation*}
$$

Obviously, with some $a>0$

$$
\sqrt{1-f(x)} \geqslant a \sqrt{1-x} \quad\left(\frac{1}{2} \leqslant x \leqslant 1\right)
$$

and for every $0 \leqslant x \leqslant 1$:

$$
\left|f^{\prime}(x)-p_{k}^{\prime}(x)\right|=\sum_{i=k+1}^{\infty} \xi_{i} 2 n_{i} x^{2 n_{i}-1} \geqslant \xi_{k+1} n_{k+1} x^{2 n_{k+1}-1}
$$

Using the last two estimates in (27) yields that for any $(x, y) \in B d K$ with $\frac{1}{2} \leqslant x \leqslant 1$

$$
\begin{equation*}
\left|D_{\omega} g_{k}(x, y)\right| \geqslant c_{3} \xi_{k+1} n_{k+1} x^{2 n_{k+1}-1} \sqrt{1-x} \tag{28}
\end{equation*}
$$

Now setting $x^{*}:=\frac{2 n_{k+1}-1}{2 n_{k+1}}$ and $y^{*}:=\sqrt{1-f\left(x^{*}\right)}$ in (28) we have

$$
\left|D_{\boldsymbol{\omega}} g_{k}\left(x^{*}, y^{*}\right)\right| \geqslant c_{4} \xi_{k+1} \sqrt{n_{k+1}} .
$$

Finally, by (23) and (26)

$$
\left|D_{\omega} g_{k}\left(x^{*}, y^{*}\right)\right| \geqslant c_{4} \xi_{k+1} \gamma_{2 n_{k}} \geqslant \frac{c_{4}}{2} \gamma_{2 n_{k}}| | g_{k} \|_{C(B d K)}
$$

where $g_{k} \in P_{2 n_{k}}^{2},\left(x^{*}, y^{*}\right) \in B d K$ and $\boldsymbol{\omega}$ is a tangent direction to $B d K$ at $\left(x^{*}, y^{*}\right)$. The proof of Theorem 3 is completed.

REFERENCES

1. M. Baran, Markov inequality on sets with polynomial parametrization, Ann. Polon. Math. 60 (1994), 69-79.
2. L. Bos, N. Levenberg, P. Milman, and B. A. Taylor, Tangential Markov inequalities characterize algebraic submanifolds of \mathbb{R}^{N}, Indiana Univ. Math. J. 44 (1995), 115-138.
3. N. Danford and J. T. Schwartz, "Linear Operators I," Interscience, New York, 1958.
4. T. Erdélyi, Remez-type inequalities on the size of generalized polynomials, J. London Math. Soc. 45 (1992), 255-264.
5. P. Goetgheluck, Inegalité de Markov dans les ensembles effilés, J. Approx. Theory $\mathbf{3 0}$ (1980), 149-154.
6. O. D. Kellogg, On bounded polynomials of several variables, Math. Z. 27 (1928), 55-64.
7. A. Kroó and J. Szabados, Markov-Bernstein type inequalities for multivariate polynomials on sets with cusps, J. Approx. Theory 102 (2000), 72-95.
8. A. Kroó, Extremal properties of multivariate polynomials on sets with analytic parametrization, East J. Approx. 7 (2001), 27-40.
9. A. A. Markov, Sur une question posée par D. I. Mendeleieff, Izv. Acad. Nauk St. Petersburg 62 (1889), 1-24.
10. W. Pawlucki and W. Plesniak, Markov's inequality and C^{∞} functions on sets with polynomial cusps, Math. Ann. 275 (1986), 467-480.
11. Sz. Révész, private communication.
12. Y. Sarantopoulos, Bounds on the derivatives of polynomials on Banach spaces, Math. Proc. Cambridge Philos. Soc. 110 (1991), 307-312.
13. V. I. Skalyga, Estimates of the derivatives of polynomials on convex bodies, Proc. Steklov Inst. Math. 218 (1997), 372-383.
14. V. Totik, On Markoff inequality, Constr. Approx.
15. D. R. Wilhelmsen, A Markov inequality is several dimensions, J. Approx. Theory 11 (1974), 216-220.

[^0]: ${ }^{1}$ Supported by the OTKA Grant T034531.

