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Let K C R bea compact set with a smooth boundary and consider a polynomial p
of total degree <n such that ||p||¢(x)<1. Then we show that \Drp( )| = o(n?) for
any X € Bd K and T a tangential drrectron at x. Moreover, the o(#?) term is given in
terms of the modulus of smoothness of Bd K. © 2002 Elsevier Science (USA)
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1. INTRODUCTION

Let K CRY be a compact set, and consider the set PZ of real algebraic
polynomials of d variables and total degree <n. Denote by

PZ(K) ={p¢€ PZJ: ||PHC(K)<1}

the unit ball in P¢ with respect to the uniform norm Pl (k) = maxxex
Ip(x)]. Furthermore let Dyg denote the derivative of g € P" in direction
o € S9! where S9! is the Euclidian unit sphere in R?. Then the Markov
factor of the set K of order n is defined as

M, (K) = max{[|Dapl|cx): p € Py(K), ® €S} (1)

It is well known that M, (K) ~ n? for convex bodies K C R?, moreover even
sharp constants are established for convex bodies. (In univariate case this
dates back to Markov [9], for multivariate convex bodies see [6, 12, 13, 15].)
It is also known that for cuspidal domains the Markov factors are generally
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of larger (but subexponential) magnitude (see [1, 5, 7,8, 10, 14] for details).
On the other hand, the classical Bernstein Inequality for trigonometric
polynomials yields that if p € PY(S?""), x € S9!, and o is a tangential
direction to S?~! at x then

|Dop(x)|<n.

This simple example shows that we might expect an improvement when only
tangential derivatives at the boundary points are considered. Let us
introduce the corresponding modification of the Markov factor (1). We
shall consider compact sets K C R? with C'-smooth boundary (as usual
Bd K and Int K stand for the boundary and interior of K, respectively). We
shall say that a compact set K ¢ R? (Int K #0) has a C' boundary if there
exist an open set D> Bd K and a representation function fx € C'(D) such
that fx(x) =1 for x € Bd K; fx(x)<1 if x € Int KN D and 0fx(x)+#0 for
x € Bd K, where Of is the gradient of fx.

In the special case, when K is convex, the natural choice for fx is the so-
called Minkowski functional (see the examples and remarks following
Theorem 1).

Clearly, 0fk (x) provides the outer normal direction to Bd K at x € Bd K.
Hence, the tangential directions o € S7~! at x € Bd K satisfy o L dfx(x).

Now the tangential Markov factor of a C'-domain can be introduced
as

MT(K) = max{|Dop(x)|: p € PY(K), x€ BAK, » Ldx(x)}. (2)

The essential difference between (1) and (2) consists in the fact that instead
of all directions @ € S?~! only tangential directions ® 1 9fx(x) at x € Bd K
are considered. This modification will yield a substantial improvement in the
rate of Markov factors. Let

w(af](,l) = sup{|6f1<(x1) — afK(X2)|Z X1,Xy € D, ‘X] — Xz‘gl}

be the modulus of continuity of dfx on D, where K, fx, and D are as
above.
This function satisfies the usual properties of moduli of continuity,

e.g.,
o0k, ct) (1 + )w(9fk, 1), t,¢> 0.
Moreover, denote by wg(¢) the modulus of smoothness of Bd K

ok (t) = to(dfk, t). (3)
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Then we have the following:

THEOREM 1. Let K C R, Int K#0, be a compact set with a C'
boundary. Then

MI(K)<——~, neN (4)

with some constant ¢ > 0 depending only on K and d.

Note that wg(t) = o(f) for a C'-domain, i.e., estimate (4) yields that
MT(K) = o(n?). Recalling that M, (K) ~ n* even for balls in R? we can see
that tangential Markov factors have smaller magnitudes. In particular, if
wk(t) ~ , 1<p<2 (this is the case when, for instance, K is an £,-ball) we
have M (K)= O(n*?). We shall also see further that (4) is sharp, in
general.

In the special case when K C R? is a convex body, the C'-smoothness of
the boundary holds whenever K is regular, i.e., there is a unique supporting
hyperplane to K at every x € Bd K (see [3, p. 449]). In this case for any fixed
Xg € Int K the corresponding Minkowski functional

X — X

L&@y:mqa>o: eK} (5)

can be used in (3). This yields.

COROLLARY 1. Let K C R? be a regular convex body with f given by (5).
Then (4) holds with some ¢ > 0 depending only on K and d.

Thus, in particular, M (K) = o(n*) whenever K is a regular convex body.
(This later statement was also obtained by Revesz [11].)

As a model of regular convex bodies consider the so-called “¢-ball”
defined as

d
B(p — {X: (Xh...,xd) S Rd: Z QD(|X]|)<1},

J=1

where ¢ € C*(0,1] is a strictly increasing convex continuous function on
[0,1], (0) =0, ¢(1) =1. Assuming, in addition, that o¢(7)/* is a
decreasing function on (0, 1] it is easy to show that for K = B,,, we have
wk (1) ~ @(t). Moreover, we have the following converse to (4) which shows
that Theorem 1 provides in general the best bound possible.
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THEOREM 2. There exists ¢; > 0 so that

M{(B@;W. (6)

The quantity M (K) provides bounds for the tangential derivatives of p
under the normalization |[p|ck)<1. This raises the natural question if
similar results can hold under a weaker assumption ||p[|c(ps g)<1? A
question of this type was investigated by Bos et al. [2] where it was shown
that on smooth algebraic curves in R? the tangential Markov factor is of the
size n or n> depending on whether the curve is closed or not.

In [2] the authors also give an example of a smooth nonclosed curve in R?
on which Markov inequality fails to hold with any factor »n", Vr > 0. We
shall use some ideas from [2] to modify this example for closed smooth
surfaces showing that the normalization [|p[|¢(, k) <1 does not lead to any
meaningful estimates for |Dyp(x)| when x € Bd K and @ L 9fx(x). Thus, we
introduce the quantity M «(K) defined similarly to MT(K) in (2) except that
condition p € PY(K) (i.e. Pllcexy<1) is replaced by ||pl|cga )< 1. P € P
Then we have

THEOREM 3. For any sequence of numbers vy, | oo there exists a regular
convex body K C R such that

M, (K
lim sup M.(K)

> 0. (7)
n—00 yn

Markov-type inequalities which measure the rate of growth of poly-
nomials have numerous applications, for instance, in inverse theorems of
approximation theory, comparison of various norms of polynomials, etc.
Estimate (4) which exhibits an improvement of the order of tangential
Markov factors on smooth surfaces yields corresponding improvements in
applications mentioned above.

2. PROOFS

First, we shall need several auxiliary geometric lemmas which are needed
for the proof of Theorem 1. From now on we assume that K ¢ R? has a C'-
boundary as defined in Section 1, and fx € C'(D) is the corresponding
representation function with modulus of smoothness @x given by (3) (D>
Bd K is open). Furthermore, we shall denote by c¢;, a;, b; constants depending
only on K and d.
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LEMMA 1.  There exist c¢1,¢; > 0 such that whenever x € Bd K, for any
y € D with |x — y| < ¢ we have

Sk (x) =k (y) = @k (x),x - y)| <20k ([x = ¥]). (®)

Proof. Let ¢; be such thaty € D if |x — y|<¢;. Clearly for some & € D
with [& — x| <[y — x| (1</j<d)

d

where x = (x1,...,x4),y = (V1,...,y4). Thus,

S8

|k (x) =[x (¥) = (Ok(x) ?9/5 ox, 3, (X)) (2 = 27)

j=1

er|x = ylo@fk, [x = y])
— cok(x—y). 1
In what follows, [a,b] = {at + (1 — )b, 0<t<1}, a,b € R’
LEMMA 2. There exists ¢y > 0 such that for every x € Bd K we have
[x,x — cpOfx(x)] C Int K. 9)

Proof. Let ¢; be such that y € D for |x —y|<¢; and relation (8) holds.
Then settingy := x — ¢110fx(x), 0<¢<1, we have by (8) using that fx(x) = 1

Tr(y) <fx(x) = (Ofk(x),x —y) + 2|x — y|o(@fk, [x — y])
— 1 — clfk (X + el (%)o@, 1 (x)]). (10)
It remains to recall now that 8fx#0 on Bd K, i.c.,

n=_inf [9fk(%)| > 0. (11)

This and (10) yield now that

Jr(y) <1 —cnt + cto(Ofx, 1) <1
if 0<t<ty, where ty) depends only on K. 1

Forx € BdK and y € R? denote by y, the orthogonal projection of y to
the hyperplane H(x) == {z € R”: (z — x, 9fx(x)) = 0}.

LEMMA 3.  There exists ¢ > 0 such that whenever x € Bd K, for every
y € Bd K such that |x —y|<c we have |x —y|<2|x —y,|.
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Proof. Since fx(x) = fx(y) = 1 we have by Lemma 1
[(Ofk (x),x — y)[<calx — y]o(@fk, [x — y)). (12)
Furthermore,
[k (x), x = ¥)| =[Ok (x)] [x — y[ [cos y (13)

with 0 <y <= being the angle between 9fx(x) and x —y. Thus by (11)—(13)

1)
|cos | <; o(@fk, [x —yl),

i.e., |cos 7| < when |x — y|<c¢e with ¢¢ chosen sufficiently small. Clearly, in
this case

|X _ | — |X 7yx|
|sin y|

<2|X - yx| ]
LeEmMMA 4. There exist ay, by > 0 such that whenever x € Bd K andy € R?
satisfy
|X—y|<a1, <X_y7afK(X)>>07 (14)

[y = ¥x|Zbiok([x = y4]) (15)

it follows that 'y € K.

Proof. Letyc¢€ R? satisfy (14) and (15). Set

),
Yo = |6fK(x)|2 afK( )

Clearly, y — y, L 8fk(x). Moreover, if |x — y|<a; with a; sufficiently small
by Lemma 2 and (14) y, € Int K. Assume now that y ¢ K. Then with some
0<r<1we have that y* := ry + (1 — t)y, € Bd K. As above denote by y? the
orthogonal projection of y* to H(x). Then by Lemma 1 applied to x,y* €
Bd K, and (11)

_ e o _ Hok(x), v* —x)| (2 -
Yy =yl =y -yl = k(] <nwk(lx Y-

In addition, applying Lemma 3 we have |y* — x| <2|y¥ — x| <2]y, — x| if
a) <c. Using this in the last estimate yields with a proper b; > 0

Iy — vl <brok(lyx — x]).
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Thus (15) fails with this by, yielding that y € K under conditions (14) and
(15). 1

Proof of Theorem 1. Let p € PY(K), (i.e., ||p||cx) <1),x € Bd K. With-
out loss of generality, we may assume that x = 0 and 9f;(x) = 9f;(0) =
(—1,0,...,0). Now we need to estimate Dyp(0) for arbitrary @ L 9/x(0).
Again, it can be assumed that = (0,1,0,...,0). (The above assumptions
will hold after proper shifts and rotations.) Now it suffices to consider the
bivariate polynomial

ﬁ(xvy) 5:P(X7J/707~~-,0) € P%l

which evidently satisfies |5(x,y)|<1 when (x,y) € K = {(x,y) € R*: (x,,
0,...,0) € K}. Note that Dyp(0) = 2 (0) Now we shall apply Lemma 4
Wthh yields, in particular, that whenever (x,y) € R?, X2+ y*<a;, x=0
(14), and x=>bjwk(]y|) (15) we have (x,y) € K. In other words with a
suitable @, > 0 and b, = ble(az)

POey)|<Tif [yl<az and  biog(ly]) sx<bs. (16)

Now for arbitrary 0 <¢<a, consider the ellipse
2 by ‘
E, =4 (x,y) € R% XZE(I —cost), y=e¢sint, |[f|<m,.

Note that wg(7)/? = w(dfk,t)/t, and by a well-known property of moduli
of continuity (applied to ®(dfk,?)) it can be assumed that wg(z)/# is
nonincreasing. Clearly, |y|<a; and 0<x<b; for (x,y) € E,. Therefore (16)
holds for those (x,y)€ E. which satisfy the additional condition
x=bjwk(|y|). Evidently,

b b .
x:?z(l—cost)>n—§t2, ly| = ¢|sin 7] <elt| (17)

whenever |7|<n((x,y) € E;). Now set

b1 I /1
Yy = n\/b:iﬁ’ e=¢y = y—a)Kl (ﬁ) (18)

We claim that whenever x = 2(1 — cos?), y = g,sint (i.e., (x,») € E,), and

7, <|t| <m it follows that x>bwk(|y|). Indeed by (17) using that wg(z)/#* is
nonincreasing we have

by 2 . b212

n¥y?2  n?

bk (y]) <biok (enl]) b1 2ok (eny,) /17 = <X
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Thus, whenever x =%(1 —cos?), y =¢,sint and 7, <|f|<n we have that
(16) holds. Set now

gu(t) ::ﬁ<bzz(1 —COos 1), &, sin t), (19)

whereby the above observation |g,(7)| <1 for every y,<|#|<=n. Note that
v, = ¢/n and g,(t) is a univariate trigonometric polynomial of deg<n.

Then by a Remez-type inequality for trigonometric polynomials proved
by Erdélyi [4]

max |g,(t)|<bs.
lt|<m

Hence using the Bernstein inequality for trigonometric polynomials
19,(0)| <bsn.
This, (17) and (19) yield

op | bsn be
i - <
20| = L0

|Dmp(0)| = Z:W

This completes the proof of Theorem 1. I

In order to prove Theorem 2, we shall need the following proposition
verified in [7].

PrOPOSITION. Let n € N, y € C[0,1], ¥(0) =0, be an increasing func-
tion of polynomial growth (i.e., x Py (x) is decreasing for some > 0). Then
there exists a p* € P} such that

(28X YPTISL and Ip*(0)>w(%/nz). (20)

Proof of Theorem 2. Consider the ¢-ball B,, where ¢ € C?(0,1] is
convex, increasing and ¢()/#* is nonincreasing (¢(0) = 0). Then with K =
Boy fc(X) = S0 0(1) (% = (x1, ., x4) we have wx(1) ~ (7). Set i
= ¢! in the above proposition and let p* € P!, n e N satisfy (20) with
Y =o' Set

p(x) = xap*(1 — x7), X = (x1,...,x4) € R (21)

Then whenever x € B, we have ¢o(|x1|) + ¢(|x2]) <1, i.e., [x;|<1 and

o(jxl) <1 = @(lxi)) <e(l - x7).
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Hence, it easily follows that
ool <o~ (e(1 = X)) e (1 — xp).

Thus by (20) and (21)

Pl < ey (l = xD)p*(1 - x7) | <er. (22)
On the other hand, w = (0,1,0,...,0) is a tangent direction to B, at X ==
(1,0,...,0) € Bd B,. Moreover, by (20) and (21)

[Dwp(x)| = |p (0)|>¢(1/n2) )

This together with (22) verifies estimate (6). 1

Proof of Theorem 3. Clearly it suffices to verify the statement of the
Theorem for 2 variables, i.e. we may set d = 2. Let y,, T oo be an arbitrary
sequence of positive numbers. Then we can choose a sequence of integers
ni € N, so that

m=1, mg>,, k=12,.... (23)

Furthermore, set & :=a2™", k=1,2,... where a = (>_;—, 2‘”k)_1. Then,
evidently,

doa=1, > §<2., keN. (24)
k=1 J=k+1
Finally, consider the function
S = &, xel-L1]. (25)
k=1

Then f is an even analytic function on [—1,1], f(0) =0 and f(1) = I.
Moreover, setting

K ={(x,y) e R f(x) +)*<1}

it can be easily shown that K is a regular convex body in R
Consider now the polynomial

ge(x,y) =1 = p(x) = y* € P, ,
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where

2‘
Z & € Py

Then for every (x,y) € Bd K = {(x,y) € R*: f(x) + y* = 1} we have |x| <1,
and by (25) and (24)

|9k (. 9)| = 1 = ¥ = pr(x)| = | /() = pe())|

i gl < i Ci<28pq-

i=k+1 i=k+1

Hence for every k € N
gkl eisa k) < 28k+1- (26)

Clearly, at any (x,y) € Bd K the tangent directions to Bd K are given by

1
o=+— 2y, —f'(x)) € S".
42 + | /1)
Therefore
2 "(x) = pi(x
1Dagi] = |(0g1, )] = LI ) ¢ g
4y + 1/ ()]
Moreover, |y| = v/T — f(x) on Bd K, and /42 + | f'(x)|*<¢| on K. Thus
using the above relation
|Dogic(x, p)| =2/ 1 = f(x) f'(x x)l,  (xy)eBdK. (27)
Obviously, with some a > 0
VI-f(x)zavl-x  (3<x<1)
and for every 0<x<1:

/() = ()| = D &2mx™ T = e
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Using the last two estimates in (27) yields that for any (x,y) € Bd K with
l<x«l
2\ ~

|Dogi(x, )= 3 men x™ V1 = x. (28)
Now setting x* .= z'ékn’—k:l and y* .= /1 — f(x*) in (28) we have

|Dogi (X*, *)| = calirrv/Aiit.

Finally, by (23) and (26)

C4
|Dogic(x*, y*)| = calis1y2,, = >V om | |9k llca k)»

where gj € P%nk, (x*,y*) € Bd K and o is a tangent direction to Bd K at
(x*,»*). The proof of Theorem 3 is completed. &
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